\[ \begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + a_4}}}
\end{equation} \]
|
Edit
|
`
x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)
`
|
Edit
|
\[
k_{n+1} = n^2 + k_n^2 - k_{n-1}
\]
|
Edit
|
\[
\frac{n!}{k!(n-k)!} = \binom{n}{k}
\]
|
Edit
|
\[
\begin{equation}
\frac{
\begin{array}[b]{r}
\left( x_1 x_2 \right)\\
\times \left( x'_1 x'_2 \right)
\end{array}
}{
\left( y_1y_2y_3y_4 \right)
}
\end{equation}
\]
|
Edit
|
\[
\sum_{i=1}^{15} t_i
\]
|
Edit
|
\[
\left(\frac{x^5}{y^8}\right)
\]
|
Edit
|
\[
\begin{matrix}
a & b & c \\
d & e & f \\
g & h & i
\end{matrix}
\]
|
Edit
|
\[
f(n) = \left\{
\begin{array}{l l}
n/2 & \quad \text{if $n$ is even}\\
-(n+1)/2 & \quad \text{if $n$ is odd}\\
\end{array} \right.
\]
|
Edit
|
\[
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
\]
|
Edit
|
\[
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}
\]
|
Edit
|
\[
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}
\]
|
Edit
|
Copyright ©2011-2012 CUI WEI. All Rights Reserved.